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Learning-Based Probabilistic LTL Motion Planning With
Environment and Motion Uncertainties
Mingyu Cai , Hao Peng , Zhijun Li , and Zhen Kan

Abstract—This article considers control synthesis of an au-
tonomous agent with linear temporal logic (LTL) specifications
subject to environment and motion uncertainties. Specifically, the
probabilistic motion of the agent is modeled by a Markov decision
process (MDP) with unknown transition probabilities. The oper-
ating environment is assumed to be partially known, where the
desired LTL specifications might be partially infeasible. A relaxed
product MDP is constructed that allows the agent to revise its
motion plan without strictly following the desired LTL constraints.
A utility function composed of violation cost and state rewards is
developed. Rigorous analysis shows that, if there almost surely
(i.e., with probability 1) exists a policy that satisfies the relaxed
product MDP, any algorithm that optimizes the expected utility is
guaranteed to find such a policy. A reinforcement learning-based
approach is then developed to generate policies that fulfill the
desired LTL specifications as much as possible by optimizing the
expected discount utility of the relaxed product MDP.

Index Terms—Linear temporal logic (LTL), Markov decision pro-
cess (MDP), motion planning, reinforcement learning.

I. INTRODUCTION

Autonomous agents are often tasked with complex missions op-
erating in an environment with uncertainties. Besides typical motion
uncertainties, e.g., agent may not exactly follow the controls due to
potential sensing noise or actuation failures, environment uncertainties
are often encountered in practice. For example, when operating in a
partially known environment, desired missions can be infeasible if the
real environment is found during the runtime to be prohibitive to the
agent. Motivated by these practical challenges, this article focuses on
the probabilistic motion planning of an autonomous agent subject to
environment and motion uncertainties.

Motion planning with linear temporal logic (LTL) constraints has
generated substantial interest in robotics (cf., [1]–[3] to name a few). To
address environment uncertainties, LTL constraints that cannot be fully
satisfied in the given environment are often relaxed to allow the tasks to
be fulfilled as much as possible. For instance, control synthesis under
soft LTL constraints was developed in [4] to maximize the satisfaction
of the LTL constraints if the desired task cannot be completed. A
minimal revision problem was considered in [5] and [6] where the
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revised motion planning is closest to the original LTL. A least-violating
control strategy was investigated in [7] for potentially infeasible tasks
within a partially known workspace. While LTL control synthesis with
environment uncertainties was investigated, motion uncertainties are
largely ignored in [4]–[7].

The Markov decision process (MDP) is widely used to model
probabilistic motion of robotic systems. Recently, there is growing
interest in the control synthesis of MDPs with LTL task specifications
by probabilistic model checking (cf., [8]–[12] to name a few). If the
transition probabilities in MDP are known a priori, existing methods
such as probabilistic model checking and dynamic programming can
be used to identify policies satisfying LTL specifications [13]. If an
MDP with unknown transition probabilities is considered, learning
approaches are often employed to learn optimal policies in the presence
of motion uncertainties [14]–[16]. For instance, model-based reinforce-
ment learning was employed in the works of [17]–[19] to synthesize
control policies satisfying given LTL specifications. In [15], the Q-
learning is extended for agents with unknown stochastic dynamics
to achieve robust satisfaction of signal temporal logic specifications.
In [20], deep reinforcement learning was employed to synthesize
control policies for mobile robots with LTL motion constraints and
stochastic motion uncertainties. In [21] and [22], instead of the tradi-
tional Rabin automata, a limit-deterministic Bchi automata (LDBA) is
used to synthesize policies maximizing the satisfaction of given LTL
specifications. Although the cases in which accepting maximum end
components (AMECs) do not exist were partially addressed in the works
of [20], [21], and [23], it is still unclear how these approaches can be
extended to handle cases in which the absence of AMECs are caused by
infeasible environments. Other representative approaches that address
motion uncertainties include the robust policy maximizing the worst-
case satisfaction probability [24] and the finite-memory control policy
optimizing both the prefix and suffix of the system trajectory [25].
Despite extensive studies of motion uncertainties on MDPs, it remains
unclear how the aforementioned results can be extended to handle
environment uncertainties.

This article considers control synthesis of an autonomous agent
with LTL specifications subject to both environment and motion uncer-
tainties. Specifically, the probabilistic motion of the agent is modeled
by an MDP with unknown transition probabilities to capture motion
uncertainties. The operating environment is assumed to be uncertain
(e.g., partially known), resulting in the possibility that the desired
mission might not be fully realized by the agent. A relaxed product
MDP is constructed based on the MDP and the deterministic Rabin
automata (DRA) generated from the desired LTL specifications [26],
which allows the agent to revise its motion plan without strictly
following the desired LTL constraints. That is, any policy satisfying
the acceptance condition of the relaxed product MDP is feasible in the
real environment. To evaluate the revised motion plans, a utility function
composed of violation cost and state rewards is developed, where the
violation cost function is designed to quantify the differences between
the revised and the desired motion plan, and the state-rewards are
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designed to enforce the satisfaction of the relaxed product MDP. Since
the workspace is only partially known, real-time sensed information
is used to update the relaxed product MDP to facilitate the revision
of motion plans. A reinforcement learning-based approach is then
developed to generate policies that fulfill the LTL specifications as
much as possible by optimizing the expected discount utility of the
relaxed product MDP.

This article is closely related to the works of [17] and [25]. Par-
ticularly, the relaxed product MDP developed to handle environment
uncertainties is inspired by the soft and hard constraints in [25], while
the learning-based approach developed to handle uncertain transitions
of the MDP is inspired by [17]. However, differing from [17] and [25],
this article jointly considers control synthesis of the MDP with un-
known transition probabilities (i.e., motion uncertainties) in a partially
known workspace (i.e., environment uncertainties). Specifically, the re-
laxed product MDP originally developed for nondeterministic automata
in [25] is modified in this article to handle deterministic automata. The
model-based learning in [17] is not suitable for large-sized problems
since it has to store all transition probabilities and state values. More-
over, the optimality of the policy in [17] is sensitive to the accuracy of
the learned transition probabilities. In contrast, a model-free learning
approach is developed in this article, which relaxes such limitations.
Compared to the work of [18], which returns no policies if there do
not exist AMECs in the product MDP, this article does not require
the computation of AMECs. In addition, based on the designed utility
function, the control synthesis problem with relaxed LTL specifica-
tions is translated to an expected utility optimization problem in this
article. Rigorous analysis shows that, if there almost surely (i.e., with
probability 1) exists a policy that satisfies the relaxed product MDP,
any algorithm that optimizes the expected utility is guaranteed to find
such a policy. A crucial benefit of this result is that advances from
optimization and learning approaches can be leveraged to address
control synthesis problems for the dynamic system with motion and
environment uncertainties.

II. PRELIMINARIES

An LTL formula is built on a set of atomic propositions Π, which
are properties of system states that can be either true or false, and
standard Boolean operators such as ∧ (conjunction), ∨ (disjunction),
¬ (negation), and temporal operators ♦ (eventually),© (next), and �
(always). The semantics of the LTL formula are defined over words,
which are an infinite sequence o = o0o1 . . . with oi ∈ 2Π for all i,
where 2Π represents the power set of Π. Denote by o |= φ if the word o
satisfies the LTL formula φ, and a word satisfies φ if φ is true at the first
position of the word. Detailed descriptions of the syntax and semantics
of the LTL can be found in [8].

An LTL formula can be translated to a DRA.
Definition 1: A DRA is a tuple R = (Q,Σ, δ, q0, F ), where Q

is a finite set of states; Σ is the input alphabet; δ : Q× Σ→ Q
is the transition function; q0 ∈ Q is the initial state; and F =
{(L1,K1), (L2,K2), . . . , (LnF

,KnF
)} is a set of pairs where

Li,Ki ⊆ Q, ∀i ∈ {1, . . . nF }.
A run of a DRA R is an infinite sequence rR = q0q1 . . . where,

for each i ≥ 0, qi ∈ Q and qi+1 = δ(qi, σ) for some input σ ∈ Σ.
A run rR = q0q1 . . . is accepting if there exists a pair (Li,Ki),
i ∈ {1, . . . nF }, such that inf(rR) ∩ Li = ∅ and inf(rR) ∩Ki 
= ∅,
where inf(rR) represents a set of states in rR that is visited infinitely
often. For any LTL formula φ over Π, one can construct a DRA with
input alphabet Σ = 2Π accepting all and only words that satisfy φ [27].

Denote byRφ the DRA generated from φ. To convert an LTL formula
to a DRA, readers are referred to [26] and the references therein for
algorithms with freely available implementations.

Transition systems with motion uncertainties are often modeled as
an MDP.

Definition 2: A labeled finite MDP is a tuple M =
(S,A, P, s0,Π, L), where S is a finite set of states; A is a finite
set of actions and A : S → 2A represents the set of actions enabled
at state s ∈ S; P : S ×A× S → [0, 1] is the transition probability
function such that, for all states s ∈ S,

∑
s′∈S P (s, a, s′) = 1 if

a ∈ A(s) and P (s, a, s′) = 0 if a /∈ A(s); s0 ∈ S is the initial state;
Π is a set of atomic propositions; andL : S → 2Π is a labeling function.

Based on the DRA and MDP in Def. 1 and 2, a product MDP can be
constructed.

Definition 3: A product MDP between a labeled MDP M =
(S,A, P, s0,Π, L) and a DRA R = (Q,Σ, δ, q0, F ) is defined
as a tuple PM = (SPM

, APM
, PPM

, sPM0, FPM
), where SPM

=
S ×Q is the set of states; APM

(sPM
) = A(s) where sPM

=
(s, q) ∈ SPM

; PPM
(sPM

, a, s′PM
) = P (s, a, s′) if δ(q, L(s′)) =

q′ and PPM
(sPM

, a, s′PM
) = 0 otherwise, where s′PM

= (s′, q′);
sPM0 = (s0, q) with q = δ(q0, L(s0)) is the initial state; and FPM

=
{(LPM1,KPM1), (LPM2,KPM2), . . . , (LPMnF

,KPMnF
)} is the

acceptance condition, where LPM i = S × Li and KPM i = S ×Ki

for all i ∈ {1, . . . nF }

III. PROBLEM FORMULATION

Consider a labeled finite MDPM = (S,A, P, s0,Π, L) represent-
ing the probabilistic motion of an agent in an operating environment,
where partitioned areas of the environment are abstracted to states
in S, the transitions of states in S represent the transitions between
adjacent areas, andP (si, a, sj) captures the transition probability under
a control action a ∈ A(si)∀si, sj ∈ S. The transition probabilities are
assumed to be unknown a priori to model motion uncertainties. The
atomic propositionsΠ represent properties ofS in the environment, and
the labeling functionL indicates the associated properties (e.g., if a state
in S is an obstacle or a destination). The high-level task specifications
to be performed by the agent are then described by an LTL formula φ
over Π.

Letμ : S → A be an action function such thatμ(si) ∈ A(si) ∀si ∈
S. A policy π over the MDP M is an infinite sequence of action
functions π = {μ0, μ1, . . .}, which resolves nondeterministic choices
inM by applying μk at each time step k. Hence, the policy π induces
a Markov chain overM, denoted by MCπ

M. If μk = μ for all k, then π
is called a stationary policy. A path ofM under π (i.e., a run of MCπ

M)
is then defined as an infinite sequence of states rπM = s0s1 . . ., where
the state transitions satisfy P (si, μi(si), si+1) > 0 for all i. A path rπM
generates a word o = o0o1 . . . where oi = L(si) for all i. Let L(rπM)
denote the word generated by the path rπM.

In this article, the environment is assumed to only partially known.
For instance, the agent may only know the destinations to be visited,
without knowing the potential obstacles it may encounter. Due to the
lack of environment knowledge, it is possible that the preassigned task
φ cannot be fully accomplished (e.g., a destination is surrounded by
water that the mobile robot cannot traverse). Therefore, considering a
labeled MDP with unknown transition probabilities, this article aims to
identify policiesπ overM that can handle infeasible LTL specifications
(i.e., satisfy the desired task φ the most whenever the environment is
infeasible).
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IV. LEARNING-BASED CONTROL SYNTHESIS

Since the desired φ can be infeasible in the given environment,
Section IV-A discusses how the original φ can be relaxed and how
the violation of φ can be quantified. The control synthesis problem
with relaxed LTL specifications is then translated to an expected utility
optimization problem in Section IV-B, where a learning-based approach
is developed to solve the utility optimization problem in Section IV-C.

A. Relaxed Product MDP

When operating in an infeasible environment, the traditional product
MDP in Definition 3 needs to be relaxed so that the revised motion does
not have to strictly stick with the infeasible LTL specifications.

Definition 4: A relaxed product MDP between a labeled MDP
M = (S,A, P, s0,Π, L) and a DRA R = (Q,Σ, δ, q0, F ) is defined
as a tuple P = (SP , AP , PP , sp0, FP ,W, V, LP ), where
1) SP = S ×Q is the set of states, e.g., sp = (s, q) ∈ SP and s′p =

(s,′ q′) ∈ SP ;
2) AP represents extended actions, e.g., aP = (a, l) ∈ AP ;
3) PP (sp, aP , s

′
p) = P (s, a, s′), if P (s, a, s′) 
= 0 with a ∈ A(s)

and ∃l ∈ 2Π such that δ(q, l) = q′, and PP (sp, aP , s
′
p) = 0 other-

wise;
4) FP is the acceptance condition given by FP =
{(Lp1,Kp1), (Lp2,Kp2), . . . , (LpnF

,KpnF
)}, where

Lpi = S × Li and Kpi = S ×Ki ∀i ∈ {1, . . . nF };
5) Lp : SP → 2Π is a labeling function such that LP (sp) = L(s);
6) W = {W i}nF

i=1 is a set of state-reward functions where W i :
SP → R is defined as

W i =

⎧⎨
⎩

wi
L, if sp ∈ Lpi

wi
K , if sp ∈ Kpi

0, if sp ∈ SP \ (Lpi ∪Kpi)
(1)

where wi
L < 0 and wi

K > 0;
7) V : SP × LP × SP → R− represents the violation cost over state

transitions.
Let W i ∈ R|SP | denote the stacked rewards of states in SP . In (1),

the negative rewardwi
L onLPi, the positive rewardwi

K onKPi, and the
reward of 0 on neutral states are designed to bias the policy toward the
acceptance condition ofP , sinceLPi andKPi need to be visited finitely
and infinitely often, respectively. Since the traditional relaxed product
MDP is only valid for nondeterministic automata, the extended actions
AP are designed to enable deterministic automata. Specifically, given
a state sP = (s, q) ∈ SP , we design AP (sP ) = {aP = (a, l)}, where
a ∈ A(s) and l ∈ 2Π such that ∃q′ ∈ Q for δ(q, l) = q′. That is, under
an action aP ∈ AP (sP ), one always has

∑
s′p∈SP

PP (sP , aP , s
′
p) =

1, ensuring thatP is a valid MDP. Denote by Γ (aP ) = a the projection
of aP to the action of A onM.

To define V , suppose that Π = {α1, α2 . . . αM} and consider an
evaluation function Eval : 2Π → {0, 1}M , where Eval(l) = {vi}M
with vi = 1 if αi ∈ l and vi = 0 if αi /∈ l, where i = 1, 2, . . . ,M
and l ∈ 2Π. To quantify the difference between two elements in 2Π,
consider ρ(l, l′) = ‖v − v′‖1 =

∑M
i=1 |vi − v′i|, where v = Eval(l),

v′ = Eval(l′), l, l′ ∈ 2Π, and ‖ · ‖1 is the l1 norm. The distance from
l ∈ 2Π to a set X ⊆ 2Π is then defined as Dist(l,X ) = 0 if l ∈ X and
Dist(l,X ) = minl′∈Xρ(l, l

′) if l /∈ X . Now the violation cost of the
transition from sP = (s, q) to s′P = (s′, q′) is defined as

V
(
sp, LP

(
s′p
)
, s′p

)
= −Dist

(
LP

(
s′p
)
,X (sp, s′p)

)
(2)

whereX (sp, s′p) = X (q, q′) = {l ∈ 2Π|q′ = δ(q, l)} is the set of input
alphabets that enables the transition from q to q′. Hence, the violation
cost V (sp, LP (s

′
p), s

′
p) quantifies how much the transition from sp to

s′p in P violates the constraints imposed by φ. Note that, X 
= ∅, since

there always exists an l ∈ 2Π such that q′ = δ(q, l) by Definition 4,
which indicates that a policy fully satisfying φ has zero violation cost.

There are two differences between the PM in Definition 3 and the
relaxed P in Definition 4. First, the constraints δ(q, L(s′)) = q′ of the
transition from sp = (s, q) to s′p = (s,′ q′) on PM is relaxed in P only
requiring there exists l ∈ 2Π such that δ(q, l) = q′, which allows the
relaxation of the constraints of φ. Consequently, P is more connected
thanPM in terms of possible transitions. Second, the designed violation
cost V over transitions can facilitate the selection of policies close to
the original φ if the environment is infeasible.

Consider a relaxed product MDP P generated byM and Rφ cor-
responding to an LTL formula φ. Let π : SP → AP be a stationary
policy on P that maps each state sP ∈ SP to an action aP ∈ AP (sP ).
Denote by rπP = sp0sp1 . . . a run of P initialized at sp0 under π.

Assumption 1: It is assumed that there almost surely (i.e., with prob-
ability 1) exists a run rπP such that,∃(Lpi,Kpi) ∈ FP , inf(rπP ) ∩ Lpi =
∅ ∧ inf(rπP ) ∩Kpi 
= ∅.

Assumption 1 indicates the acceptance condition of the relaxed MDP
can be reached with probability 1. As discussed in [8], Assumption
1 is mild and only a qualitative property of Markov chains, which
indicates the motion planning problem is feasible. In other words,
we only assume the almost sure existence of a path rπP satisfying the
acceptance condition of P . Since there may exist multiple accepting
runs, the following section will focus on the synthesis of policies
that stay close to the original LTL specification φ while satisfying the
acceptance condition ofP when the environment is infeasible. It should
be noted that an accepting run rπP in Assumption 1 does not necessarily
indicate the desired task φ is fully satisfied. Instead, an accepting run
rπP is a relaxed motion planning for the agent when the environment is
infeasible.

B. Control Synthesis

This section focuses on identifying policies that induce accepting
paths of P while staying close to the original φ. Since the closeness
to φ can be measured via the violation cost V , a utility function
is designed and the subsequent analysis shows that maximizing the
expected utilities can find a policy that fulfills the LTL specification φ
as much as possible.

For i ∈ {1, . . . , nF }, letPi denoteP with the state-reward function
W i in (1) and U i

π = [U i
π(sp0) U

i
π(sp1) . . . ]

T ∈ RN denotes the
stacked expected discounted utility induced by the policy π on Pi,
where N = |SP |. The utility is designed as

U i
π =

∞∑
n=0

γnP n
π

(
W i + βRπ1N

)
(3)

where 0 < γ < 1 is a discount factor, P π ∈ RN×N contains the
probabilities PP (sp, π(sp), s

′
p) under π for all sp, s′p ∈ SP , W i =

[W i(sp0) W
i(sp1) . . . ]

T ∈ RN is the stacked state-rewards, β ∈
R+ is a weight indicating the relative importance, 1N is an N -
dimensional vector of ones, and Rπ = P π ◦ V ∈ RN×N is the
Hadamard product of P π and V , i.e., Rπ =[PP (sp, π(sp), s

′
p) ·

V (sp, LP (s
′
p), s

′
p)]N×N , where V ∈ RN×N contains the violation

cost between pairs of states in SP . For notational convenience, the
superscript i (i.e., the index of the Rabin acceptance condition of the
LTL specification) is omitted in the rest of this work, and we use W
and Uπ to represent the reward and utility vectors of P with the Rabin
acceptance condition (Lpi,Kpi).

Based on the defined utility in (3), an optimal policy π∗ is designed
as

π∗ = argmax
π

∞∑
n=0

γnP n
π (W + βRπ1N ) . (4)
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Since the policy π∗ in (4) is optimal, Uπ(sp) ≤ Uπ∗(sp) for all sp ∈
SP . When considering all pairs (Lpi,Kpi), i = 1, . . . , nF , solving (4)
yields a collection of policies {π∗i}

nF
i=1. Note that V is a nonpositive

matrix, since the violation cost of transitions between any pair of states
in (2) is nonpositive. Consequently, Rπ in (4) is a nonpositive matrix,
due to the Hadamard product of the probability matrix P π and V . If a
Markov chain MCπ

M induced by π fully satisfies φ, the violation cost
associated with the satisfactory path is zero. Therefore, maximizing the
utilities in (4) tends to bias the selection of policies toward those that
can generate Markov chains close to the original LTL specification φ.

Theorem 1: Consider a relaxed MDP product P generated byM
and Rφ corresponding to an LTL formula φ. If there exists a policy π̄
such that an induced run rπ̄P satisfies Assumption 1, then there exists
i∗ ∈ {1, . . . nF } such that any optimization method that obtains the
solution to (4) of Pi∗ with β, γ, wL, and wK satisfying the conditions
in (12), (15), (16), and (19) can find the policy π̄.

Proof: See the Appendix for the proof. �
Theorem 1 indicates that the control synthesis with relaxed LTL

specifications can be cast into an expected utility optimization problem.
Solving (4) can generate a collection of strategies {π∗i}

nF
i=1 for eachPi.

As demonstrated in Theorem 1, with a proper design of β, γ, wL, and
wK , there exists at least one policy in {π∗i}

nF
i=1 guaranteed to satisfy

the acceptance condition of the relaxed MDP.

C. Reinforcement Learning-Based Strategy

This section develops a model-free learning strategy to address the
utility optimization problem in (4), which is outlined in Algorithm 1.
Due to the limited environmental knowledge, the system starts with
an initial, possibly imprecise, belief about the environment. To correct
the potentially imprecise state labels (e.g., a state s′p that is believed
to be an obstacle initially can then be found to not be), the state label
LP (s

′
p) needs to be updated based on newly sensed information at

current state sp before applying learning algorithms. It is assumed that
the environment remains static between two consecutive samplings.
Specifically, let Info(sp) = {LP (s

′
p)|s′p ∈ Sense(sp)} denote the ob-

served labels of s′p that are different from the current belief, where
Sense(sp) represents a local set of states that can be sensed at sp.
If the sensed labels LP (s

′
p) are consistent with the current belief of

sp, Info(sp) = ∅. Otherwise, the properties of s′P need to be updated.
For a given LTL formula φ, the violation cost defined in (2) depends
only on the state labels. Note that LP (sp) = L(s), where sp = (s, q),
which indicates that all states sp ∈ SP with the same s need to be
updated. Let [[sP ]] = {sp = (s, q)|q ∈ Q} denote a class of sp with
the same s. Let LP ([[s

′
p]]) denote the label of the class [[s′p]] and let

V ([[ŝp]], LP ([[s
′
p]]), [[s

′
p]]) denote the violation cost corresponding to

the transitions from [[ŝp]] to [[s′p]], where [[ŝp]] represents a class of states
that can transit to [[s′p]] in one step. Lines 7–14 in Algorithm 1 show
how Info(·) is used to update the state labels and the violation cost
associated with state transitions.

As discussed in [28], reinforcement learning occurs over multiple
trials where the system has to be reset periodically. In addition, there
exist deadlock states in the DRA from which there does not exist a
trace satisfying the accepting condition. Since the learning process may
enter deadlock states or causes safety violation, inspired by [17], the
function ResetRabinState is introduced to periodically reset the initial
condition of the Rabin component in MDP P , whenever either a set
time interval is reached or a safety violation occurs (i.e., lines 17 and
18 in Algorithm 1). To address the exploitation versus exploration issue
in reinforcement learning, the diminishing ε-greedy approach in [29]
is applied. That is, the exploration and the exploitation in the learning
process have the probability ε and 1− ε, respectively, where ε is set

Algorithm 1: Learning-Based Control Synthesis.

1: procedure INPUT: LTL specification φ, initial MDPM, α,
β, γ, wL, wK , and the iteration threshold k̄

Output: the optimal policy π∗

Initialization: construct the product MDP P , initialize U
and the policy π∗, set episode ke = 0 and iteration k = 0;

2: while U is not converged do
3: ke ++;
4: sp=sp0;
5: while k ≤ k̄ do
6: k ++;
7: if Info(sp) 
= ∅ then
8: for all s′p such that LP (s

′
p) ∈ Info(sp) do

9: Update the labels of [[s′p]] to LP (s
′
p);

10: for all ŝp such that ∃ap for PP (ŝp, ap, s
′
p) 
= 0 do

11: Update the violation cost V ([[ŝp]], LP ([[s
′
p]]), [[s

′
p]]);

12: end for
13: end for
14: end for
15: Select a current action ap based on ε-greedy method;

16: sp
aP→ s′p

17: if ResetRabin() is True then
18: s′p ← ResetRabinState(s′p);
19: else if sp is not Null then
20: Receive R(sp, ap, s

′
p);

21:

Q(sp, ap)← (1− α)Q(sp, ap) + α
[
R(sp, ap, s

′
p)

+ γ max
ap∈AP (sP )

Q(s′p, ap)
]
;

22: U ∗π(sp) = max
ap∈AP (sP )

Q∗(sp, ap);

23: π∗(sp) = arg sup
ap∈AP (sP )

U ∗π(sp);

24: end if
25: end while
26: end while
27: end procedure

close to 1 initially to encourage exploration and gradually decreases to
encourage exploitation as the learning evolves.

Based on the Q-learning [30], the agent updates its Q-value after
transiting from sp to s′p under an action ap according to

Q (sp, ap) ← (1− α)Q (sp, ap)

+ α

[
R
(
sp, ap, s

′
p

)
+ γ max

ap∈AP (sP )
Q
(
s′p, ap

)] (5)

where Q(sp, ap) is the Q-value of the state-action pair (sp, ap), 0 <
α ≤ 1 is the learning rate, 0 ≤ γ ≤ 1 is the discount factor, and

R
(
sp, ap, s

′
p

)
= W i (sp) + β · V

(
sp, LP

(
s′p
)
, s′p

)
(6)

denotes the immediate reward from sp to s′p under ap. With standard
learning rate α and discount factor γ as in [30], Q-value will converge
to a unique limit Q∗, based on which the optimal expected utility and
policy can be obtained as U ∗π(sp) = maxap∈AP (sP )Q

∗(sp, aP ) and
π∗(sp) = argmaxaP ∈AP (sP )Q

∗(sp, aP ). In (5) and (6), the discount
γ is tuned for improved tradeoff in using immediate and future rewards,
while β is designed to specify the relative importance between max-
imizing the satisfaction of φ and minimizing the violation cost (i.e.,
lines 20–23 in Algorithm 1).
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Fig. 1. Grid world example with a sample trajectory generated by
policy π∗. The robot is tasked to avoid obstacles and visit P1, P2, and
P3 infinitely often. The trajectory starts at (0, 3) marked by the square,
and the arrows indicate movements between adjacent cells. (a) and (b)
infeasible and feasible cases, respectively.

In Algorithm 1, the number of states is |S| × |Q|, where |Q| is
determined by the DRA Rφ and |S| is the size of environment.
Due to the consideration of the relaxed product MDP and extended
actions in Definition 4, the maximum complexity of actions available
at sP = (s, q) is O(|A(s)| × |Σ|). Despite the increase of the action
complexity, compared with [17], the developed learning approach in
Algorithm 1 does not need to approximate and store all transition
probabilities.

V. CASE STUDY

Consider a robot tasked to perform φ = �¬Obs ∧�♦P1 ∧
�♦P2 ∧�♦P3 in a grid environment as shown in Fig. 1. The robot
knows the locations of P1, P2, and P3, without knowing the obstacle
positions. The motion of the robot within the environment, i.e., “up,”
“down,” “right,” and “left,” is modeled as an MDPM. It is assumed
that the action can be successfully implemented with probability 0.9
and fails with probability 0.1. The transition probability is assumed to
be unknown in simulation and needs to be learned. The LTL formula φ
is translated to a DRARφ using ltl2dstate [31], whereRφ has |Q| = 9
states. Based onRφ andM, a relaxed product MDPP is created, which
has |SP | = 225 states.

The robot starts its motion planning according to an initial belief
about the environment. Algorithm 1 is called to update the belief based
on the sensed information and the observed transitions. Active temporal
difference learning is employed to estimate the expected discount
utilities and generate optimal policies. The design parameters are set
as β = 5, γ = 0.98, α = 0.9, wL = −8, and wK = 10. A set of 600
iterations, which were separated by the ResetRabinState function in
Algorithm 1 every 200 iterations, were performed in simulation. The
algorithm is implemented in MATLAB on a PC with Intel i7 4 cores
processor, 3.60 GHz, and 32-GB memory.

The simulation results are shown in Fig. 1. Fig. 1(a) represents an
infeasible environment where P3 is surrounded by obstacles, while
Fig. 1(b) represents a feasible environment where φ can be fully
performed. The lines in Fig. 1(a) and (b) indicate paths that maximize
the utilities, and the arrows indicate the optimal actions at each cell.
The revised path in Fig. 1(a) is generated based on the relaxed product
MDP P , which only visits P1 and P2 while avoiding obstacles.

To show the effectiveness of our approach in a larger scale problem,
we consider a 40× 40 grid environment as shown in Fig. 2. The task is
expressed as ϕ = �¬Obs ∧ ♦T1 ∧�(T1→©(¬T1UT2)), where
T1 and T2 represent the destinations to be visited sequentially and Obs
represents the obstacles. With similar settings, the simulation results are
shown in Fig. 2. Fig. 2(a) represents a feasible environment where ϕ
can be fully performed, while Fig. 2(b) represents an infeasible envi-
ronment where T1 is surrounded by obstacles. The learned trajectories
in Fig. 2(a) and (b) are represented in green, indicating the paths that

Fig. 2. (a) Planned trajectory of a feasible case. (b) Agent trajectory
when the required task is not fully feasible (e.g., T1 is not reachable due
to the obstacles) in the given environment. The trajectories (i.e., green
blocks) in (a) and (b) are generated by Algorithm 1, starting from the left
corner (i.e., the cyan block).

maximize the utilities. Since the environment in Fig. 2(b) is infeasible,
a revised path is generated based on the relaxed product MDPP , which
only visits T2 while avoiding obstacles. In contrast, the path generated
in Fig. 2(a) fully satisfies the mission requirement of ϕ.

VI. CONCLUSION

This article considers a learning-based method to synthesize control
policies for MDP with LTL specifications subject to environment and
motion uncertainties. A model-free learning framework is developed
to generate policies that fulfill the LTL specifications as much as
possible by optimizing the expected discount utility of the relaxed
product MDP. The considered optimization has multiobjectives, i.e.,
maximizing reward collection and minimizing violation cost, which
can even be conflicting in many cases. Future research will consider
better tradeoff among multiple objectives. Additional research will
also consider leveraging tools, such as barrier certificate [32] or cost
optimization both in the prefix and suffix of the trajectory [25], to enable
motion planning with both hard-constrained and soft-constrained tasks.
Since the LDBA has an exponential-sized automaton [21], additional
research will consider using the LDBA to reduce the complexity of the
automaton and improve the computational efficiency.

APPENDIX

Proof of Theorem 1: Consider two policies π̄ and π∗, where π̄ is a
policy satisfying the acceptance condition of P , and π∗ is an optimal
policy satisfying (4). Let MCπ̄

P denote the Markov chain induced by
the policy π̄ on P , whose states can be represented by a disjoint union
of a transient set Tπ̄ and n closed irreducible recurrent sets Rj

π̄ , j ∈
{1, . . . , n} [29]. Note that, for policy π̄, there exists a pair (Lpi,Kpi) ∈
FP such that Lpi ∈ Tπ̄ and Kpi ∩Rj

π̄ 
= ∅ for all j ∈ {1, . . . , n}. Let
Π∗ be the set of optimal policies that optimize the expected utility
in (4). Similar to MCπ̄

P , the states of MCπ∗
P under a policy π∗ ∈ Π∗

can also be divided into a transient set Tπ∗ and m recurrent sets Rj
π∗ ,

j ∈ {1, . . . ,m}.
The strategy of the following proof is based on contradiction. We will

show that, if an optimal policy π∗ ∈ Π∗ does not satisfy the acceptance
condition ofP , there always exists a policy π̄with greater utility thanπ∗,
which contradicts to the optimality ofπ∗. Hence, the policy maximizing
the utility in (4) is guaranteed to satisfy the acceptance condition of P .

To this end, suppose π∗ ∈ Π∗ does not satisfy P . Then, one of the
following two cases must be true.

Case 1: There exists a recurrent set Rj
π∗ ∩Kpi = ∅, which means

Kpi is only visited finitely often.
Case 2: There exists a recurrent set Rj

π∗ ∩ Lpi 
= ∅, which means
Lpi can be visited infinitely often.
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Let Π∗ = Π1 ∪Π2, where Π1 and Π2 represent the set of policies
satisfying Cases 1 and 2, respectively. Based on (3), the expected
utilities under π∗ is

Uπ∗ =

∞∑
n=0

γnP n
π∗ (W + βOπ∗) (7)

where Uπ∗ = [Uπ∗(sp0) Uπ∗(sp1) . . . ]
T ∈ RN is the stacked state

utilities and Oπ∗ = [Oπ∗(sp0) Oπ∗(sp1) . . . ]
T = Rπ∗1N , where N

is the number of the states of MCπ∗
P and 1N ∈ RN is a vector of

all ones. The rewards W ∈ RN , transition probability matrix P n
π∗ ∈

RN×N , and Rπ∗ ∈ RN×N are all defined similarly as in (4) over the
states of MCπ∗

P . Denote [Rπ∗ ]ij by Rπ∗
ij and Rπ∗

ij = PP,ij · Vij ≤ 0,
due to the nonnegative probability PP,ij and the nonpositive viola-
tion cost Vij . Hence, Oπ∗ in (7) is element-wise nonpositive, i.e.,
Oπ∗(spi) ≤ 0 for all i ∈ {1, . . . N}.

Suppose there are r transient states (i.e., |Tπ∗ | = r) and m recurrent
setsRi

π∗ , i ∈ {1, . . . ,m}, where eachRi
π∗ has Ni states. The expected

utility in (7) can be reorganized as

[
U tr

π∗

U rec
π∗

]
=

∞∑
n=0

γn

[
P π∗ (T , T ) P tr

π∗

0∑m

i=1
Ni×r

P π∗ (R,R)

]n

·
([

W tr

W rec

]
+ β

[
Otr

π∗

Orec
π∗

]) (8)

where U tr
π∗ and U rec

π∗ are the utilities of states in transient and recurrent
classes, respectively. In (8),P π∗(T , T ) ∈ Rr×r denotes the probability
transition matrix between states in Tπ∗ . The zero matrix 0∑m

i=1
Ni×r

indicates the states in which recurrent classes have zero probability

transiting to Tπ∗ . The P tr
π∗ = [P tr1

π∗ . . . P
trm
π∗ ] ∈ Rr×

∑m

i=1
Ni is a prob-

ability transition matrix where P tri
π∗ ∈ Rr×Ni represents the probabil-

ity of transiting from a transient state in Tπ∗ to the states of Ri
π∗ .

The P π∗(R,R) is a diagonal block matrix, where the ith block is
an Ni ×Ni matrix containing transition probabilities between states
within Ri

π∗ . Note that P π∗(R,R) is a stochastic matrix since each
block matrix is a stochastic matrix [33]. The rewards W and Oπ∗ can
also be partitioned to W tr, W rec, Otr

π∗ , and Orec
π∗ based on transient and

recurrent classes, respectively.
Infeasibility of Case 1: First, consider a policy π∗ ∈ Π1, which

indicates that there exists some j such that Kpi∩Rj
π∗ = ∅. The utilities

of recurrent states are obtained from (8) as

U rec
π∗ =

∞∑
n=0

γnP n
π∗ (R,R) (W rec + βOrec

π∗) . (9)

Consider a state sp ∈ Rj
π∗ and let P

spRj

π∗ denote a row vector of
P n

π∗(R,R) that contains the transition probabilities from sp to the
states in the same recurrent class Rj

π∗ in n steps. The utility of sp is
then obtained from (9) as

U rec
π∗ (sp) =

∞∑
n=0

γn
[
0T
k1

P
spRj

π∗ 0T
k2

]
(W rec + βOrec

π∗) (10)

where k1 =
∑j−1

i=1 Ni, k2 =
∑m

i=j+1 Ni, and 0T
k1

and 0T
k2

are vectors

of zeros with dimension k1 and k2, respectively. Since Kpi∩Rj
π∗ = ∅,

based on Definition 4, the rewards of states in Rj
π∗ are nonpositive.

That is, the entries in W rec corresponding to the states in Rj
π∗ are

nonpositive. Given that the entries inOrec
π∗ are all nonpositive andβ > 0,

(10) indicates that U rec
π∗ (sp) ≤ 0 under the optimal policy π∗.

To show that Case 1 cannot be true, the following analysis will show
that U rec

π̄ (sp) > U rec
π∗ (sp), which contradicts the optimal policy π∗.

Based on the type of state sp, two subcases are discussed for policy π̄.

Subcase 1: If sp ∈ Rj
π̄ , one has Rj

π̄ ∩Kpi 
= ∅ since π̄ is a policy
that satisfies the acceptance condition of P . Thus, there exists at least
one sK ∈ Kpi such that sK ∈ Rj

π̄ . In addition, since Lpi ∩Rj
π̄ = ∅,

the entries in W rec corresponding to the recurrent states in Rj
π̄ have

nonnegative rewards by Definition 4. Note that at minimum there is
only one state sK ∈ Kpi in Rj

π̄ with reward wK > 0, while the other
rewards for recurrent states inRj

π̄ are 0. Thus, considering the case of
π̄ in (10), U rec

π̄ (sp) can be lower bounded as

U rec
π̄ (sp) ≥

∞∑
n=0

γn
(
P

spsK
π̄ wK + βP

spRj
π̄ V rec

π̄ 1Nj

)
(11)

where P spsK
π̄ is the transition probability from sp to sK in n steps, and

V rec
π̄ ∈ RNj×Nj represents the violation cost of states in Rj

π̄ . Since
sp and sK are recurrent states, there always exists a lower bound
P

spsK
π̄ ∈ R+ of the transition probability P

spsK
π̄ in (11). Given that

P
spsK
π̄ , β,Nj are all positive, the positive reward wK can be selected

to large enough that

P
spsK
π̄ wK + βN2

j V
rec
π̄ > 0 (12)

where V rec
π̄ ∈ R− represents the minimal entry in V rec

π̄ . If (12) holds,
U rec

π̄ (sp) > 0, leading to the contradictionU rec
π̄ (sp) > U rec

π∗ (sp). Hence,
sp cannot be in a recurrent set.

Subcase 2: If sp ∈ Tπ̄ , at minimum all transient states of Tπ̄ will
have negative rewards, i.e., W tr = [wL . . . wL]

T ∈ Rr with wL < 0,
and only one state sK ∈ Kpi is in the recurrent class with positive
reward wK .

As demonstrated in [33], for a transient state s, there always exists
an upper boundΔ <∞ such that

∑∞
n=0 p

n(s, s) < Δ, where pn(s, s)
denotes the probability of returning from a transient state s to itself in
n time steps. For a recurrent state s, it is always true that

∞∑
n=0

γnpn(s, s) >
1

1− γn
p̄ (13)

where there exists n such that pn(s, s) is nonzero and can be lower
bounded by p̄ [33].

From (8), one has

U tr
π̄ >

∞∑
n=0

γnP n
π̄ (T , T )

(
W tr + βOtr

π̄

)

+
∞∑

n=0

γnP tr
π̄P

n
π̄ (R,R) (W rec + βV rec

π̄ 1Ñ ) .

(14)

Let max(·) and min(·) represent the maximum and minimum en-
try of an input vector, respectively. Consider the lower bound
V tr

π̄ = min(V tr
π̄1r) and the upper bound m̄ = {max(M)|M <

P tr
π̄P̄ (W rec + βV rec

π̄ 1Ñ )}, where Ñ =
∑m

j=1 Nj and P̄ is a block
matrix whose nonzero entries are derived similar to the p̄ in (13).
Using the fact that wL < 0 and

∑∞
n=0 γ

nP n
π̄(T , T ) ≤ Δ1r×r [33],

where 1r×r is a r × r matrix of all ones, the utility U tr
π̄(sp) can be

lower bounded from (13) and (14) as U tr
π̄(sp) > Δr(wL + βV tr

π̄) +
1

1−γn m̄.SinceU rec
π∗ (sp) < 0, the contradictionU tr

π̄(sp) > U rec
π∗ (sp)will

be achieved if

Δr
(
wL + βV tr

π̄

)
+

1

1− γn
m̄ > 0 (15)

which indicates that Case 1 cannot be true. SinceΔr(wL + βV tr
π̄) < 0,

it needs m̄ > 0 so that the inequality in (15) holds when γ is sufficiently
close to 1. Note that when there is only one sK ∈ Rj

π̄ and sK ∈ KPi,
m̄ > 0 if

wK + βÑV rec
π̄ > 0 (16)
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whereV rec
π̄ = min(V rec

π̄ 1Ñ ). In summary, Case 1 cannot be true, ifwL,
wK , β, and γ are properly designed such that (12), (15), and (16) are
satisfied.

Infeasibility of Case 2: For π∗ ∈ Π2, consider a state sp ∈ Ri
π∗ ∩

Lpi for some i. The following analysis starts by deriving an upper bound
of U rec

π∗ (sp), which will then be proven to be less than U rec
π̄ (sp), leading

to the contradiction that π∗ is an optimal policy.
Consider that sp has the negative reward wL and all other states in

Ri
π∗ have positive rewardwK , which yields the upper bound from (9) as

U rec
π∗ (sp) ≤

∞∑
n=0

γn (Ni − 1)wK +
∞∑

n=0

γnβP
spsp
π̄,n wL

≤ (Ni − 1)wK

1− γ
+ βwL

p̄
spsp
π̄,n

1− γ
� Ū rec

π∗ (sp)

(17)

where Ni is the number of states in Ri
π∗ , P

spsp
π̄,n represents the proba-

bility of returning from sp to itself in n steps, p̄spspπ̄,n is an upper bounder
of P spsp

π̄,n , and the fact that Orec
π∗ ≤ 0 is used.

In addition, since sp ∈ Lpi, the policy π̄ indicates that sp is in the
transient class Tπ̄ . If (16) is satisfied, the lower bound of U tr

π̄(sp) is
derived from (14) as

U tr
π̄ (sp) > � Δr

(
wL + βV tr

π̄

)
� U tr

π̄ (sp) . (18)

Based on (17) and (18), if wL, wK , β, and γ are properly designed such
that

Δr
(
wL + βV tr

π̄

)
>

(Ni − 1)wK

1− γ
+ βwL

p̄
spsp
π̄,n

1− γ
(19)

the contradiction U tr
π̄(sp) > U rec

π∗ (sp) achieves, which indicates that
Case 2 cannot be true.

Base on the analysis of Cases 1 and 2, the optimal policy π∗ that
optimizes (4) also satisfies the acceptance condition of P , provided
that (12), (15), (16), and (19) are satisfied.

The following shows how wL, wK , β, and γ can be determined
to satisfy (12), (15), (16), and (19). First, given a fixed wK , β can
be determined such that (12) and (16) are satisfied. Based on the
determined wK and β and the conditions in (15) and (19), wL and γ
need to be selected to satisfy Δr(1− γn)(wL + βV tr

π̄) + m̄ > 0

and (Ni − 1)wK + βp̄
spsp
π̄,n wL − (1− γ)Δr(wL + βV tr

π̄) < 0. The
reward wL can then be determined first by solving (Ni − 1)wK +
βp̄wL < −ε, where 0 < ε < m̄, and γ can be determined by solving

max
{
−Δr

(
1− γn

) (
wL + βV tr

π̄

)
− (1− γ)Δr

(
wL + βV tr

π̄

)}
< ε.
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